Author: mpolin

Swarming, Traffic Jams and Biofilms

Transient traffic jam within a monolayer bacterial swarm. Notice the cells being pushed out of the monolayer!

Absolutely delighted that Iago’s paper on the transition from bacterial swarming to biofilms is now out on eLife.

When the expansion of a B. subtilis swarm is hindered (even just by a simple barrier!) cells at the front pile up through a physical process similar to a traffic jam (a transient one in the movie!). This in turn leads to the emergence of a localised biofilm. This is the first direct report we could find of a transition between swarming and biofilm! Great work by Iago and fab collaboration with Munehiro Asally!

Ah! …here’s eLife‘s press release!

PhD opening (PHYMOT)

We are currently looking for a PhD student, funded by the Marie-Curie European Training Network PHYMOT. Come with us to study the inner biomechanics of the eukaryotic flagellum, one of the most complex known (biological) micro-machine! The PhD position is an excellent opportunity to do your research within a fantastic Europe-wide network of researchers, and an exciting plan of training activities and secondments.

To know more, feel free to email Marco. The current deadline is January 2020, with a starting date between February and December 2020. The position will be re-advertised if needed.

Myosin tracking with iSCAT and a Galaxy-recognition Python library

myosin_recognition

We recently had the great opportunity to collaborate with Darius Koester to study the behaviour of myosin II bundles and actin filaments. Our side of the work was spearheaded by Lewis Mosby, who adapted a Python library originally used to feature galaxies to recognise the myosin bundles, and analysed in great detail their motile behaviour. Part of this work is published in The Biophysical Journal  (preprint here). The detailed description of the myosin tracking can be found in a Special Issue of The Journal of Physics D, from the IOP (preprint here).

Confinement “diversifies” micro-swimmers

confined_flow

From soil bacteria to sperm swimming in the fallopian tubes, microorganisms are often found to swim within confined environments. What is the effect of confinement on their flow fields? In a new paper, recently published in Physical Review Letters, we combine experiment and modelling to show that -contrary to expectations- the variety of microbial flow fields is greatly increased under confinement. This can in turn have have qualitative effects on both the biology (e.g., feeding currents) and the physics (e.g., collective behaviour) of microorganisms in confinement. This work was done in collaboration with Raphael Jeanneret and Mitya Pushkin.

 

Dr. Henshaw!

Great news! On Friday Richard has successfully defended his PhD thesis 🙂 We were all very happy and wish Richard all the best in his future postdoc at Tufts! A couple of papers from his thesis work on micromonas will be submitted later this year 🙂