Biophysics of swimming cells (selected topics)

E. coli

Turner, Ryu and Berg J. Bacteriol. 182, 2793 (2000) $10 \, \mu m$

C. reinhardtii (eukaryotic microalga)

Marco Polin
Physics Department
University of Warwick (UK)

The Plan:

- Low-Re very quick recap
- Bacterial flagella
- · Run-and-tumble

- Eukaryotic flagella
- Flagellar synchrony
- Flagellar growth

Prokaryotes and Eukaryotes:

two solutions to the swimming problem average width human hair $\sim 10 \mu \mathrm{m}$ $\sim 100 \mu \mathrm{m}$ Eukaryotes protists choanoflagellates spermatozoa kinglab.berkeley.edu stanford.edu/group/Urchin eukaryotic microalgae

E. coli

 $\sim \mu \mathrm{m}$

Prokaryotes

Photo Seija Hällfors.

Pyramimonas sp. Scale bar 30 µm. Photo Seija Hällfors.

Brennen and Winet (1977)

Eukaryotes

Generally larger (>10µm) and faster (>100µm/s) than bacteria

Chlamydomonas photo-bioconvection (10x speed)

Eukaryotic flagellum/cilium

sophisticated 250 nm

http://en.wikipedia.org

- transport
- propulsion
- mechanochemical sensing
- mating
- regulation of cell cycle

•

highly conserved

Homo sapiens

Pazour *et al.* (2006)

Prof. U. B. Kaupp, Forschungszentrum Jülich

Involved in a wide variety of ciliopathies

Table 2Ciliopathies, phenotypes, and associated genes.

Disorder	Overall phenotype	Ciliary phenotype	Genes
Bardet-Biedl Syndrome	 Polydactyly Obesity Retinal degeneration Renal dysfunction Mental retardation Hypogonadism 	Truncated	BBS1-12
Nephrononphthisis Senor-Loken Syndrome	Cystic kidneys-reduced kidney size.NPHPRetinal involvement	Fewer, truncated Fewer, truncated	NPHP1-9, Nek8 NPHP1, NPHP4, NPHP5/IQCB1, NPHP6/CEP290, SDCCAG8
Joubert Syndrome	NPHPEye/Retinal involvementCerebellar Vermis Aplasia	Fewer, truncated	INPP5E, TMEM216, AHI1, NPHP1, NPHP6/CEP290, TMEM67, RPGRIP1L, ARL13B, CC2D2A, OFD1
Jeune Asphyxiating Thoracic Dystrophy Polycystic Kidney	 Skeletal abnormalities (small thoracic cage) Enlarged, cystic kidneys 	None (defects from abnormal hedgehog signaling) Fewer, truncated	IFT80
Disease Juvenile Cystic Kidney		Elongated	IFT88, PKD1, PKD2 Nek8
Disease Sensenbrenner	Cystic kidneys Craniofacial abnormalities	Fewer, truncated	IFT22, IFT43
Syndrome	Cramoracian abnormanics	rewer, transacted	1122, 1113
Situs Inversus	 Randomization of visceral organ laterality 	Absent, Truncated, Immotile	Kif3A/B, NPHP2
Meckel-Gruber Syndrome	Cystic kidneysCNS malformationHepatic abnormalities	Elongated	MKS1,3,5,6; CEP290, BD91,BD92
Tuberous Sclerosis	Tumors affecting brain, skin, heart, kidneys, and lung	Elongated	Tsc1, Tsc2
Alstrom Syndrome	Retinal dystrophy	Positioning defect, truncated (in some models)	ALMS1
	 Hearing loss Obesity Type 2 diabetes Short stature Reduced intelligence 		
Orofaciodigital Syndrome 1	Malformation of face, oral cavity, digits	Fewer	OFD1
Primary Ciliary Dyskinesia	 Impaired airway mucus clearance (chronic respiratory infections) Hydrocephalus Infertility 	Immotile	DNAI1, DNAH5, TXNDC3, DNAH11, DNAI2, KTU, RSPH4A, RSPH9, LRRC50
Kartegener Syndrome	PCDSitus inversus	Immotile	

kidney proliferation

V. Singla, Science (2006)

breaking left-right symmetry

Hirokawa N, et al. 2009. Annu. Rev. Fluid Mech. 41:53-72

We will focus on Chlamydomonas reinhardtii

- good model system to study flagella
- representative of eukaryotic swimming microorganisms

A quick tour of Chlamy

Unicellular biflagellate green alga
 (Volvocaceae ⊂ ... ⊂ Chlorophyta ⊂ Viridiplantae)

F. Leliaert, et al. Crit. Rev. Plant Sci. (2012)

- Cell body: ~10 μm; "front" flagella: ~12 μm / ~50 Hz
- Swimming speed: ~100 μm/s
- Cell spins at ~2 Hz
- Short vegetative life cycle (haploid):
 1 day, up to 8x growth
- 2 "mating types" (+/-) for sexual reproduction

perrin33.com/microbiologie/lereste

A quick tour of Chlamy

- Cell body surrounded by a cell wall (CW; ~200nm thick; glycoproteins; no cellulose)
- CW has specialised flagellar pores (Flagellar Collar; ~500nm Ø)

CW layers

Flagellar Collars

Chlamy Sourcebook

- Chloroplast (Chl) for photosynthesis (~70% cell volume)
- A single pyrenoid (Py): starch accumulation

Bioconvection!

M. Bees, University of York

biased upward swimming

$$\dot{\theta} = \frac{B}{\gamma_r} \sin(\theta)$$

gravitactic torque

bottom heavy

$$\mathbf{g} \quad \tau = B\sin(\theta)$$

A quick tour of Chlamy

 Mictorubule rootlets (MTR) ensure the correct internal organisation of the cell.

(E.g. the eyespot is ~20° ahead of the flagellar plane.)

- The rootlets stem from two Basal Bodies (BB):
 - Joined by fibres
 - Become centrosomes during cell division
 - Template the growth of flagella and root them in the cell body

The structure: "passive scaffold"

standard "9+2" axoneme

- 9 outer microtubule pairs (A and B)
- Nexin links between adjacent pairs
- Central microtubule pair (twisted in protists, not in animals)
- Radial spokes b|w central pair and outer doublets
- All microtubules plus ends towards the tip

The structure: "passive scaffold"

closeup on tip structures

- Cilia ~2-5µm; Flagella ~10-20µm (typical)
- Connection to basal body by transition region (~200nm)
- Transition region is also the SOFA (site of flagellar autotomy) (wait a few slides)
- Specialised tip structure (~500nm)
- Specialised flagellar membrane: flagellar "necklace" controls mixing with cell membrane "proper"
- Ectosomes are constantly ejected at the tip (50-200nm): proposed to act e.g. as TxT Msg between cells

Question: are flagella stiff or flexible?

(you have 2 min to think about it)

Stiff or flexible is a length-dependent concept

For "thermal" filaments: compare length L with persistence length L_P

Q: Estimate the persistence length for a flagellum

$$L_P = \frac{EI}{k_B T}$$

Flexural rigidity of a single microtubule

$$EI \simeq 2 \times 10^{-23} \, \mathrm{Nm}^2$$

Kikumoto et al. Biophys J. 2006

Stiff or flexible is a length-dependent concept

For "thermal" filaments: compare length L with persistence length L_P

...even without taking into account the internal structure!

The structure: "active components"

- 96nm repeat unit:
 - four outer dynein arms (oda): produce most of the power
 - various inner dynein arms (*ida*) + Dynein Regulatory Complex (DRC): mostly regulatory
 - Linker proteins b|w odas; idas & odas; DRC & odas (not shown)

How many dyneins are there in a typical 10um 9+2 flagellum?

Your Turn:

- Radial spokes (RS) approx. 30nm long:
- emerge from A µtubule, towards central pair at 16nm repeats;
- involved in regulating the activity of DRC and ida I1

~4500

The structure: "active components"

Isolated Tetrahymena cilia reactivated in ATP-containing buffer

 the dyneins generate relative translation between adjacent microtubule doublets

Warner & Mitchell, JCB (1981)

 Tangential shear from the dyneins is then converted to bending by the presence of mechanical constraints (basal body; nexins)

Riedel-Kruse I.H., et al. HFSP J. (2007)

- Periodic beating requires regulation of dynein activity
 - i) active clocking from the cell?
 - ii)emergent self-regulation within the axoneme?

The structure: "active components"

Sea urchin sperm

de-membranated and alive in "proper" buffer time

Gibbons & Gibbons, JCB (1972)

Axonemal beating is an "emergent property"

of the interaction between the passive scaffold and the active component (dyneins)

Currently three alternative hypotheses:

geometric clutch

curvature control

sliding control

Interested? see e.g. notes in mpolin.com/teaching and outreach

An unexpected consequence of motility: Flagellar Coordination

Coordinating thousands of eukaryotic flagella without "a brain"!

Flagellar coordination in eukaryotes: a universal feature

Can coordination emerge spontaneously?
Role of mechanical coupling?

poorly understood

Volvocales to the rescue: A model system for flagellar dynamics

Chlamydomonas (unicellular)

Kirk, D. L. Volvox, CU Press (1998); Kirk, D. L. BioEssays 27, 299 (2005); Herron M. D., and Michod, R. E. Evolution 62, 436 (2007);

Coordination between two cells

Dynamics of individual somatic cells

Analysis of experimental phase difference: Polin, et al. Science (2009); Goldstein, Polin, Tuval PRL (2009,2011); Leptos, et al. PRL (2013)

Synchronisation properties

Fluctuations' PDFs during synchrony

Phenomenological model

Stochastic Adler model for $\Delta(t)$

R. E. Goldstein, M. Polin, I. Tuval, PRL (2009)

Phenomenological model

Stochastic Adler model for $\Delta(t)$

Q: Given the scaling of σ^2 , how does κ depend on L??

Dependence on alignment

In-phase

Anti-phase

$$\kappa > 0$$

$$\kappa < 0$$

Estimated coupling strength vs. separation

Experimental averages

Flag. length
$$\langle \ell \rangle = 20.1 \, \mu \mathrm{m}$$
 } + Minimal model $\longrightarrow |\kappa_{model}| = 0.015 \times L^{-1}$ Beating freq. $\langle \bar{\nu} \rangle = 33.9 \, \mathrm{Hz}$

- Niedermayer, Eckhardt, Lenz *Chaos* **18**, 037128 (2008)
- Brumley, Polin, Pedley, Goldstein PRL 109, 268102 (2012)

Minimal model: flexible rotating spheres

2) Assume that orbits are flexible

Single cell flow field $\,v\,$ is like that of a point force

Point-force approximation to single cell flow

Well described by a point force but applied to a point that does not move along direction of the force (anisotropic drag of flagellum)

Flagellar waveform vs. separation: flow induced deformations??

Flagellar waveform vs. separation

The waveform is distorted by the interaction

Interactions distort flagellar waveform

- •limit cycle constructed from 3 reference points along flagellum
- •approximately 8000 beats for each cell-cell separation
- •deformation is more pronounced along distal portions of the flagellum

...to summarise:

- Hydrodynamic coupling leads to flagellar synchronisation between different cells.
- •Synchronisation is accompanied by a subtle but easily measurable deformation of the beating waveform.
- Quantitative agreement with a simple minimal model supports coordination as an emergent property, resulting from the interplay of hydrodynamics and flagellar elasticity.

Done! We found the mechanism!!

...not quite!

Within a single cell the mechanism seems to be different...

- •Quaranta, Aubin-Tam, Tam, PRL (2015)
- •Wan, Goldstein PNAS (2016)

Final stretch: Flagellar assembly!

Flagellar Autotomy

R. E. Goldstein, M. Polin, I. Tuval PRL (2011)

- Deflagellation in response to "harsh" stimuli: mechanical stress; pH shock; etc.
- Triggered by Ca²⁺ influx
- A regulated process:
 - axoneme severed at the SOFA ("site of flagellar autotomy") within the transition region
 - produces a clean cut
- Unclear evolutionary advantage
- Instrumental for flagellar proteomics: easy to isolate and collect a lot of flagella

How to cut a flagellum

• If you shed it, you need to be able to GROW IT BACK

Flagellar regrowth

- ~1 2h to full length
- Non-linear growth dynamics
- Symmetric: same for both flagella
- Beating resumes at ~4µm length (why??)

Intra Flagellar Transport (IFT) (Highly Conserved!!)

- IFT Trains: 0.05-1µm long; 50nm wide
- Walk on B-microtubules of outer pairs
- Kinesin → Anterograde (tip-wise) ~2µm/s
- Dynein → Retrograde (BB-wise) ~3µm/s
- New proteins moved to tip; old go back to cell

Reaching a finite length: the balance point model

IFT does not stop at full flag. length...

Outer microtubule doublet:
B tubule A tubule

H. Ishikawa, and W. Marshall (2011)

Without IFT: flag. dissociates at constant rate

W. Marshall, et al. Mol. Biol. Cell (2005)

Length dependent growth + constant decay

ecay
$$\frac{dL}{dt}=j_+(L)-j_-$$

$$j_+(L)=p_{cargo}\,p_{int}\frac{\lambda}{\tau}$$

$$\tau=2L/Mv \qquad \text{IFT arrivals}$$
 constant # IFT trains

$$L_* = Mv\lambda\,p_{cargo}\,p_{int}/2\,j_-$$
 equilibrium length

Gliding: an unexpected consequence of IFT

S. M. Shih, et al. eLife, 2, e00744 (2013)

Chlamys attach on glass surfaces spreading their flagella

TIRF + GFP-tagged IFT trains

How gliding works

Retrograde dyneins:

- 1) attach to glass (transmembrane proteins) and....
- 2) pull the cell

Your turn

- gliding force ~20-30 pN
- gliding speed ~1-2 μm/s

How many dyneins are involved?

~4

Is the gliding velocity limited by viscous drag by the cell body?

No. It is not always hydrodynamics!